

COMPUTER SIMULATION OF SULPHURIC ACID PLANTS

By: Guy Cooper, P. Eng Kim Nikolajsen, PhD Brian Ferris, P. Eng

Of: NORAM Engineering and Constructors Ltd. Vancouver, BC

For: Lead Zinc Sulfuric Acid Short Course October 3, 2010, Vancouver, BC

Agenda

- Why Simulate Your Plant
- Challenges
- History
- Tools Available
- Modeling an Acid Plant (steady-state)
- Dynamic Modeling
- Summary

Who is NORAM?

- Based in Vancouver
- Founded in 1988
- 100 employees chemical and mechanical
- Performed over 144 acid plant studies
- Supplied over 150 acid plant components
- Own a fabrication shop, 80 employees
- Licensor to Simon Carves UK -450 mtpd acid plant UAE
- Licensor to Bateman South Africa Two 2850 mtpd acid plants Madagascar

Computer Simulation of Sulphuric Acid Plants

NORAM's Sulfuric Acid Equipment

Computer Simulation of Sulphuric Acid Plants

Axton Fabrication Shop

2010 Winter Olympics - Vancouver

Why Simulate Your Acid Plant ?

- Allows you to change process inputs and see how your plant will perform
- Identify process bottlenecks
- Determine benefits of new equipment
- Confirm accuracy of process measurements
- Improve plant control; parametric analysis

In general, allows a better understand of your acid plant

Sounds great, but... it ain't easy to model and get the above benefits!

Generic Sulphuric Acid Plant

Gas Process Flow Diagram

Challenges in Simulating Your Acid Plant

- Don't trust all your process readings (some are flakier than others)
- Missing important equipment information
- Don't know what software to use
- Software may not be easy to use
- Don't have time

History of Process Simulators

- In-House Process Simulators
 - Popular 1960's-1980's
 - Created by in-house engineers of major oil & gas, chemical companies
 - Ran on computer mainframes
- Simulation Sciences, *Process*, later, *PRO/II*
 - *Process* Ran on Main Frame
 - Appeared on the scene late '70's
 - PRO/II came out about 1990. PC-based batch operation
- Hyprotech, *Hysim*, later *Hysys*
 - First major PC Based Simulation
 - Calgary Based, U of C, appeared in mid '80's
 - Interactive, backward calculation capability gave increased flexibility
 - Hysys introduced in the '90's was Windows version of Hysim
 - NORAM used it for gas side. Acid side done on spreadsheet

History of Process Simulators (cont'd)

- Aspen Technology Inc. Aspen Plus, & Hysys,
 - Created in 1981. Joint research project MIT and US DOE. Advanced System for Process Engineering (ASPEN)
 - Acquired Hyprotech in 2004 and divested Hysys code to Honeywell (FTC)
 - Offer suite packages
- Honeywell, UniSim, formerly Hysys
 - Bought the code to Hysys in 2004
 - Markets under the name UniSim
 - Offer suite packages

The suite packages offered include steady state, dynamic modeling, special physical property packages, heat exchangers, pipe pressure drop, plant optimization, basic engineering, ... next presentations for sulphuric acid plant courses

Tools Available

(for Process Simulation)

- Commercial Generic Simulators
 - Aspen Hysys, Apen Plus, Honeywell Unisim
 - Need to develop equipment models and select property packages
 - Somewhat flexible for new equipment
 - Lease costs can be high
- Third Party Dedicated Software
 - Shiv Shukla, India *Sulphuric*, and others
 - Limited in flexibility
 - Pre-configured
 - Relatively low cost <\$2000

Tools Available (cont'd)

(for Process Simulation)

- User Created Spreadsheet Models
 - User creates models of individual equipment or entire acid plant
 - Requires good understanding of unit operations
 - Requires source of physical property data correlations
 - Provides good flexibility in data input/output
 - Requires checking of connectivity
 - Requires good documentation and internal notes for use by others

Tools Available (cont'd) Suite Packages

Tools Available (cont'd) Suite Packages

Compare based on Technology & Economics!

Tools Available (cont'd) Hysys vs Aspen Plus

Aspen HYSYS Benefits

Aspen HYSYS is a proven, industry-standard solution with over twenty years of use in the field. Customers have recognized and reported:

- \$15 million per year in incremental profitability from process optimization
- \$10 million per year in capital savings resulting from improved designs
- \$1 million per year of reduced engineering cost

Aspen Plus is a proven, industry-standard solution with over twenty years of use in the field. Customers have recognized and reported:

- \$15 million per year in incremental profitability from process optimization
- \$10 million per year in capital savings resulting from improved designs
- \$1 million per year of reduced labor costs from improved conceptual engineering workflow

Physical Property Prediction

- Important part of simulation is ensuring accurate physical property prediction
- In simple terms, Equations of State are formula and coefficients used to predict component and stream physical properties under varying conditions
- For sulphuric acid plants, gas, steam and acid generally use separate equations of state to predict Cp, Volume, Density, conductivity, and so forth

Various Equations of State

1. Overview
2 Historical
2.1 Boyle's law (1662)
2.2 Charles's law or Law of Charles and Gay-Lussac (1787)
2.3 Dalton's law of partial pressures (1801)
2.4 The ideal gas law (1834)
2.5 Van der Waals equation of state
3 Major equations of state
3.1 Classical ideal gas law
4 Cubic equations of state
4.1 Van der Waals equation of state
4.2 Redlich–Kwong equation of state
4.3 Soave modification of Redlich-Kwong
4.4 Peng-Robinson equation of state
4.5 Elliott, Suresh, Donohue equation of state
5 Non-cubic equations of state
5.1 Dieterici equation of state
6 Virial equations of state
6.1 Virial equation of state
6.2 The BWR equation of state
7 Multiparameter equations of state
7.1 Helmholtz Function form
8 Other equations of state of interest
8.1 Stiffened equation of state
8.2 Ultrarelativistic equation of state
8.3 Ideal Bose equation of state
9 Equations of state for solids

Physical Property Prediction (cont'd) Reference: AICHE Conference. Salt Lake City. UT: 7Nov2007

Summary

- The SO₂-H₂O-H₂SO₄ system in the HyS cycle poses significant modeling challenges
- Existing models for SO₂ solubility in sulfuric acid are deficient
 - Speciation most likely not correct
 - Differences between models lead to different performance predictions for SO₂-handling operations
- Aspen Plus[™] modified Oleum model needs three distinct parameter/speciation sets to describe SO₂-H₂O-H₂SO₄ system
 - divided into low-/high-temperature and SO₂ VLE/VLLE regions
 - Good performance within each regime, but discontinuous transitions
- OLI Systems' Mixed Solvent Electrolyte model gives comparable fit
 - No need to change model for temperature, VLLE reasons
 - Can be used as a property option set within Aspen Plus™

Unit Operations

- Sulphur Furnace Gibbs or Conversion model reactor
- Acid Towers Component splitter, absorption module
- Blower Compressor module
- Heat Exchanger/Acid Cooler Heat exchanger module
 - UA input and predict two temperatures, or,
 - Three of four temperatures are input and fourth predicted
- Converter Reactor module
 - Conversion. Input conversion.
 - Equilibrium. Input approach to equilibrium

Computer Simulation of Sulphuric Acid Plants

Building a model of the plant

- Get out plant process flow diagrams and piping and instrument diagrams
- Get exchanger drawings or rating sheets
- Take pressure profile and gas flow for starting point of model
- Record temperatures and flows of plant streams
- Enter stream and equipment data
- Model plant

It's that easy. But most likely not!

Modeling blower performance from blower curve

Custom-built Spreadsheet

- Spreadsheet Set-Up
 - Mass and energy balances are simulated for the equipment components
 - Gas: Cp vs. Temperature for each component is from validated references
 - Acid: Solution enthalpy vs. Concentration and Temperature
 - Water: Cp is from steam tables

$$H = \int_{T_{REF}}^{T} \sum_{i} (y_i C_{Pi}) dT$$

- Columns in spreadsheet are for streams
- Unit operations carried out on the components in the streams
- For SO2 to SO3 reaction enter approach to equilibrium or conversion

• User Created Spreadsheet Models

C2 🗸		•	🗲 Inlet Air											
	A	B	С	D	E	F	G	Н	I	J	K	L		
1				Extrac	ct of Sprea	adsheet Model of Sulphuric Acid Plant								
2			Inlet Air		X Blower	Dry Air		Furnace	WHB1 By	X WHB1	X Super	Bed 1 In		
3			G1		G2	G3		G4	G5	G6	G7	G8		
4	Pressure	psig	-0.14		6.20	5.92		5.56	5.56	4.95	4.76	4.73		
5		in WC (g)	-4.0		171.9	164		154.1	154.1	137	132	131.0		
6		bara	0.94		1.38	1.36		1.34	1.34	1.29	1.28	1.28		
7	Temperature	۳F	80		168	175		1,848	1,848	833	750	795		
8		°C	26.7		75.7	79.4		1,009	1,008.6	444.9	398.8	424.1		
9												424.0		
10	SO2	kgmol/hr	0	0.00%	0	0	0.00%	- 77	3	74	74	77.4		
11	SO3	kgmol/hr	0	0.00%	0	0	0.00%	0	0	0	0	0.0		
12	H2O_vap	kgmol/hr	21	2.75%	21	0	0.00%	0	0	0	0	0.0		
13	02	kgmol/hr	154	20.37%	154	154	20.95%	77	3	74	74	77.0		
14	Ar	kgmol/hr	7	0.91%	7	7	0.93%	7	0	7	7	6.9		
15	N2	kgmol/hr	576	75.97%	576	576	78.12%	576	22	553	553	575.7		
16	Flow	kgmol/hr	758	100.00%	758	737	100.00%	737	29	708	708	736.9		
17		Nm3/hr	16,983		16,983	16,517		16,517	644	15,873	15,873	16,517		
18		SCFM	9,996		9,996	9,721		9,721	379	9,342	9,342	9,721		
19	Diameter	in	27		27	27		36	18	27	27	36		
20	Velocity Head	in WC	0.49		0.39	0.38		0.50	0.01	0.85	0.80	0.29		
21	Mole Wt	kg/kgmol	28.66		28.66	28.96		32.33	32.33	32.33	32.33	32.33		
22		ACFM	11,780		9,362	9,338		34,565	1,348	19,219	18,163	19,646		
23		m3/hr	20,014		15,907	15,865		58,726	2,290	32,653	30,858	33,379		
24	Cross sec are	m2												
25	velocity	m/s												
26	Re		6.38E+05	#DI∨/0!	5.66E+05	5.47E+05	#DI∨/0!	1.86E+05	1.45E+04	3.53E+05	3.71E+05	2.82E+05		
27		kg/hr	21,715		21,715	21,340		23,821	929	22,892	22,892	23,821		
28	Density	kg/m3	1.09		1.37	1.35		0.41	0.41	0.70	0.74	0.71		
29		lb/ft3			0.085	0.084								
30	Viscosity	Pas	1.75E-05	1.63E-05	1.98E-05	2.01E-05	1.65E-05	4.97E-05	4.97E-05	3.34E-05	3.18E-05	3.27E-05		
31	Conductivity	W/m K	2.56E-02	2.36E-02	2.91E-02	2.95E-02	2.38E-02	7.30E-02	7.30E-02	4.81E-02	4.58E-02	4.71E-02		
32	Heat capacity	kJ/kg K	1.02	#DIV/0!	1.02	1.01	#DIV/0!	1.13	1.13	1.02	1.01	1.02		
33	Enthalpy	kJ/kgmol	1,310		2,743	1,585		57,470	57,470	37,731	36,214	37,043		
34		kJ/hr	9.93E+05		2.08E+06	1.17E+06		4.23E+07	1.65E+06	2.67E+07	2.56E+07	2.73E+07		
35	Duty	kJ/hr	Blower head		1.09E+06	9.11E+05		Heat loss		1.40E+07	1.07E+06			
36	Conversion	Bedwise	Ср	29.2	efficiency			0.5%		1.33E+07	1.02E+06	BTU/hr		
LOT	I		I I I	4,000	1							. I		

• User Created Spreadsheet Models

	· 🖂 🖂 🖻 🕫	2-1 -													
	A1 🔻	∙ <i>f</i> ×													
	A	В	С	D	E	F	G	Н		J	K	L	M	N	0
1		MTPD as 10	0% H2SO4												
2	10.50%	SO2, Bed 1	Inlet		1/10/2010	13:46									
3	99.60%	Conversion													
4	95.5	kPa Site Pre	essure												
5			Sulphur	Inlet Air	X Blower	Dry Air	Furnace	WHB1 By	X WHB1	X Super	Bed 1 In	Bed 1 Out	WHB2 By	Bed 2 In	Bed 2
6			S	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G1
7	Pressure	in WC (g)		-4	172	164	154	154	137	132	131	118	118	108	
8	Temperature	F		80	168	175	1,848	1,848	833	750	795	1,118	1,118	869	1,
9	S02	lbmol/hr		0	0	0	171	7	164	164	171	70	14	70	2
10	S03	lbmol/hr		0	0	0	0	0	0	0	0	101	21	101	14
11	H2O_vap	lbmol/hr		46	46	0	0	0	0	0	0	0	0	0	
12	02	lbmol/hr		340	340	340	170	7	163	163	170	119	24	119	9
13	Ar	lbmol/hr		15	15	15	15	1	15	15	15	15	3	15	1
14	N2	lbmol/hr		1,269	1,269	1,269	1,269	49	1,220	1,220	1,269	1,269	260	1,269	1,28
15	Flow	lbmol/hr	171	1,670	1,670	1,625	1,625	63	1,561	1,561	1,625	1,574	323	1,574	1,
16		SCFM		9,996	9,996	9,721	9,721	379	9,342	9,342	9,721	9,420	1,931	9,420	9,
17		ACFM		11,780	9,362	9,338	34,565	1,348	19,219	18,163	19,646	24,573	5,037	21,124	23,
18		lb/hr	5,470	47,874	47,874	47,048	52,517	2,048	50,469	50,469	52,517	52,517	10,766	52,517	52,
19	Density	lb/ft3		0.0677	0.0852	0.0840	0.0253	0.0253	0.0438	0.0463	0.0446	0.0356	0.0356	0.0414	0.0
20	Enthalpy	BTU/Ibmol		563	1,179	681	24,708	24,707	16,222	15,569	15,925	16,434	16,434	14,344	14,
21		BTU/hr		9.41E+05	1.97E+06	1.11E+06	4.01E+07	1.57E+06	2.53E+07	2.43E+07	2.59E+07	2.59E+07	5.30E+06	2.26E+07	2.26E
22															

User Created Spreadsheet Models

	D59 -	f≈ =D55/D56													
	A	В	С	D	E	F	G	Н	1	J	к	L	M	N	
1	HIP pro-rating		Basis	Current	Design 1			Bypass pressure	balance						
2	Production rate	MTPD	175	181.4	58.975			Bypass			Main flow throu	igh HIP tul	bes	A1/A3	Q1.K
3	SO2 conc	%	10.51%	10.50%	10.25%			Duct ID	22	in	Duct ID	26.875	in	#VALU	El
4	Flow to Bed 1	Nm3/hr	15879	16517	5487			Vel. Head	0.01	in WC	Vel. Head	0.50	in WC	Bypass	contrac
5	vol. turndown	%	100%	104%	35%			fittings	#	K-value	fittings	#	K-value	A2/A1	
6	Prod. Turndown	%	100%	104%	34%			inlet nozzle (CIP ves	1	0.5	inlet nozzle (CIP v	1	0.5	1.1	19
7								damper ca. 55%	1	5	90° elbow, r/d=1	3	0.45	Main line	e contra
8	Tube OD	in	1					90° turn, r/d=1	0	0.7	Total		1.9	A2/A1	
9	Tube ID	in	0.834					Total		5.5	dP (section)	0.92	in WC	1.0	37
10	Effective tube length	ft	6.625					dP (section)	0.03	in WC	Duct ID	27.75	in		
11	Tube #		750					Duct ID	24	in	Vel. Head	0.44	in WC		
12								Vel. Head	0.00	in WC	fittings	#	K-value		
13								fittings	#	K-value	Abrupt contractio	0	0	1	
14								Abrupt contraction	1	0.06	inlet nozzle	1	1		
15								90° turn, r/d=1	0	1.0	Total		1.0	1	
16								entry	1	1	dP (section)	0.44	in WC		
17								Total		1.1	tubes	3.76	in WC		
18								dP (section)	0.00	in WC		0.36	in WC : pr	adicted br	y Gas e
19								dP TOTAL	0.04	in WC	dP TOTAL	5.12	in WC		
20								Is Bypas dP < Mai	ndP?						
21								YES					10		
22														E	1
23	Tube Re		12137	12114	2751								50)0 t	<u>.</u>
36	Pressure drop					0.5	7-87		1.0		K ₃₁				11
37	Tube dP	in WC	4.14	3.76	0.34		Ken			0.9	5 /8/8	797		- 1	NC .
38	Shell dP	in WC	2.24	2.42	0.36	2			0.9			6			
39	Heat transfer					6.5			0.8	$\forall \rightarrow$		<u> </u>	10	~ = +	11
40	Tube side coeff	BTU/ft2 hr "F	11.71	11.36	3.67									50 E	
41	Shell side coeff	BTU/ft2 hr "F	21.05	21.60	11.11				0.7					~F T	A
42	wall resist	ft2 hr °F/BTU	0.00063	0.00063	0.00063		6.1 6.2 6.3 6 F	4 8.5 8.6 8.7 9.8 8.9 LB Investion, QVQ;	0.6		\mathbf{K}	10		ΕI	
43	Tube fouling	ft2 hr "F/BTU	0.000	0.000	0.000	Ng talk D	othing flow branch angles of	6-97. Ion coefficient K ₀	\$ 0.5			2.0 .=		ΓI	
44	Shell fouling	ft2 hr °F/BTU	0.000	0.000	0.000				<			1	v	10	
45	Tube side resist	ft2 hr °F/BTU	0.085	0.088	0.273				0.4			3.0	κ _υ	ΈL	
46	Shell side resist	ft2 hr "F/BTU	0.048	0.046	0.090				0.3		KAR			5	<u> </u>
47	U outside	BTU/ft2 hr "F	7.49	7.41	2.75					NX		6.0		ΓI	
48		W/m2 K	42.5	42.1	15.6				0.2	XX	1-	- 2			
49	Area (out)	m2	121						0.1	44	90"	1			
50		ft2	1301									11 31	1	.0	+
51	LMTD	к	100	128	73				0 0.	0.2 0.3	0.4 0.5 0.6 0.7 0.3	8 0.9 1.0		F I	
52	Effectiveness factor		0.979								Flow ratio, Q_1/Q_3		0	.»F	
53	Effective LMTD	K	98.3	125.8	71.0				Fig. 13.21'.	Dividing flow: br	anch angle 90°, loss coeff	icient K ₃₁		- I	
54	Duty			226	128										
55	Performance	kJ/hr	1.82E+06	2.30E+06	4.82E+05										
56	Required	kJ/hr	1.69E+06	2.60E+06	5.69E+05						26%		0	0 10	20
57	Safety factor		7.8%	-11.4%	-15.2%										Val
58	HIP Bypass			7.0%	33.0%	good till 43	% bypass	at 59MTPD rate and 2	22/20"ID (ar	nd K=8.6)					
59	Solver target			0.886	0.848	good till 50	% bypass	at 59MTPD rate and 2	22/20"ID (ar	nd K=4.6)			Fig. 1	4.19. Lo	ss coef
60	Bypass ID	in		24	20	good till 55	% bypass	at 59MTPD rate and 2	24/22"ID (ar	nd K=4.6)					
61	Main ID	in		Duct ID	Duct ID										
62	Bypass dP	in WC		0.04	0.17										
63	Main dP	in WC		5.12	0.40										

• User Created Spreadsheet Models

_	A	в	C	D	F	F	G	н	1	1	K		M	N	0	D	6
-	Catabast	u da basad a	n Tanasa Darf		Deediatio		00		-	0	N		191	14	Catabast	F F	<u>``</u>
	Catalyst Id	bads based o	n Topsoe Perr	09								Catalyst I	oads base	a on			
-	10.5%SO2,	99.85% conv	ersion												11%SO2, 9	99.85% cor	ivers
3	Production	181	MTPD (as 100%)	acid)											Production	183	MTPE
ł	1/10/2010 1	13:46							Exsisting c	atalyst							
5	Diameter	12.5	ft						Diameter	12.3	ft				Diameter	12.5	ft
5	XS area	11.4	m2						XS area	10.9	m2				XS area	11.4	m2
r		Catalyst vol	Catalyst height	ΔP (incl	. inerts)	Gas velocity	Total bed H	1		Catalyst vo	Catalyst he	ΔP	Gas veloc	ity		Catalyst ve	Catal
3		m3	ft	in WC	mm WC	Sft/min	ft	in		m3	ft	in W.C.	Sft/min			m3	f
3	Bed 1	6.60	1.90	2.7	68	79	2.67	8.1	Bed 1	5.67	1.70		82		Bed 1	6.11	1.
0	Bed 2	7.40	2.13	2.9	73	77	2.93	11.1	Bed 2	5.80	1.74		80		Bed 2	9.17	2.1
1	Bed 3	8.40	2.42	3.1	79	76	3.24	2.9	Bed 3	7.98	2.39		79		Bed 3	11.50	3:
2	Bed 4	11.40	3.28	37	94	67	419	2.3	Bed 4	12.00	3.60		70		Bed 4	10.97	3
3	Overall	33.80	9.73	12.4		0,	4.10	2.0	Overall	31.45	9.42	0.0			Overall	37.75	10
4	Over all	33.00	5.15	12.4					Overail	51.45	3.42	0.0			Overall	51.15	10.
4																	
0														-			
5											entry nozz	ies:	ratio 14-20	1%			
(exit nozzle	S:	20%				
8													or 25-33%	if tapered o	outlet nozzi	e, with no s	sharp
9																	
0			Circular	Eliptical	rectang						Conve	rter diam	eter [ft]				
1			Diameter	Height	Width	additional	Area	Flow rate	Density	Head	12.5						
2			in	in	in	height	m2	Am3/h	kg/m3	in W.C.	Ratio no	zzle head	nd to AP _{bad}				
3	Bed 1	Nozzle A	34			-	0.59	33379	0.71	0.36	13%			Ratio must	be < 20%		
4		Duct to A	27				0.37	33379	0.71	0.90	34%						
5		Nozzle B	Eliptical	24	48		0.58	41749	0.57	0.45	17%						
6		Nozzle B	Rectangular	18	48		0.56	41749	0.57	0.50	18%						
7		Duct from B	27				0.37	41749	0.57	1 13	10%						
8	Bed 2	Nozzle C	Eliptical	34	34		0.59	35889	0.66	0.39	13%			Ratio must	he < 20%		
ā	DCGZ	Nozzle C	Rectangular	18	48		0.56	35889	0.66	0.00	15%			Ratio must	be < 20%		
ň		Duct to C	27				0.37	35889	aa 0	0.40	10%			rtaile maet	00 4 20 70		
1		Nozzle D	Eliptical	24	48		0.58	30856	0.60	0.43	15%						
5		Nozzie D	Rectenciuler	19	40		0.50	30956	0.00	0.45	16%						
4		Duct from D	27	10	40		0.30	30856	00.0	1.08	10 /0						
4	Bod 2	Nozzla E	Elistical	24	24		0.57	24070	0.00	0.20	10%			Potio must	ho x 20%		
5	Deu S		<u>Eliptica</u> Postopaulor	40	40		0.55	24070	0.00	0.30	1270			Ratio must	be < 20%		
0		NUZZIE E	Rectangular	10	40		0.30	24972	0.00	0.42	1376			Ratio niust	pe < 20%		
0			21		10		0.37	34972	0.00	0.95	1000						
<u>(</u>		Nozzie F	Eliptical	24	48		0.58	36656	0.65	0.40	13%						
8			Rectangular	18	48		0.56	36856	0.65	0.44	14%						
9		Duct from F	21				0.37	36856	0.65	1.00							
0	Bed4	Nozzle G	Eliptical	34	34		0.59	34931	0.52	0.28	8%			Ratio must	be < 20%		
1		Nozzle G	Rectangular	18	48		0.56	34931	0.52	0.31	8%			Ratio must	be < 20%		
2		Duct to G	27				0.37	34931	0.52	0.71							
3		Nozzle H	Eliptical	24	48		0.58	36673	0.49	0.30	8%						
4		Nozzle H	Rectangular	21	48		0.65	36673	0.49	0.24	7%						
5		Duct from H	27				0.37	36673	0.49	0.75							
6		Total additio	nal converter h	eight [in]		0											
7																	

Custom-built Process Simulation

Commercial Simulation Process Flow Diagram

Dynamic Modeling an Acid Plant

- Useful when conditions fluctuate
- Can help setup process controls
- Requires all the information for steady state simulation plus
 - Thermal mass
 - Residence time
 - Valve description
- Use commercial package or create your own

Custom Built Dynamic Process Simulation

Commercial Program for Dynamic Simulation

Figure 2a. Aspen HYSYS Controlled from DMCplus GUI

Figure 2b. Aspen HYSYS Acting like the Real Plant

DMCplus GUI

Commercial Program for Dynamic Simulation

Summary

- Process simulation tools can be useful
- Require work for meaningful results
- Plants have several options for simulation
- May require consultant for assistance (unbiased promotion!)

Thank You and Good Day